Comparison of functional connectivity between empirical and randomized structural brain networks
نویسندگان
چکیده
This study combines experimental and modeling approaches in order to investigate the temporal dynamics of the human brain at rest. The dynamics of the neuronal activity is modeled with FitzHugh-Nagumo oscillators and the blood-oxygen-level-dependent (BOLD) time series is inferred via the Balloon-Windkessel hemodynamic model. The simulations are based on structural connections that are derived from diffusionweighted magnetic resonance imaging measurements yielding anatomical probabilities between the considered brain regions of interest. In addition, the length of the fiber tracks allows for inference of coupling delays due to finite signal propagation velocities. We aim (i) to investigate the network topology of our neuroimaging data and (ii) how randomization of structural connections influence dynamics on top of it. The network characteristics of the structural connectivity data are compared to density-matched Erdős-Rényi random graphs. Furthermore, the neuronal and BOLD activity are modeled on both real and random (Erdős-Rényi type) graphs. The simulated temporal dynamics on both graphs are compared statistically to capture whether the spatial organization of these network affects the modeled time series. Results supported that key topological network properties such as small-worldness of our neuroimaging data are distinguishable from random networks. Moreover, the simulated BOLD activity on real and random graphs are observed to be dissimilar. The difference of the modeled temporal dynamics on the brain and random graphs suggests that anatomical connections in the human brain together with dynamical self-organization are crucial for the temporal evolution of the resting-state activity.
منابع مشابه
Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions
Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...
متن کاملComputer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity
Background: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain net...
متن کاملModeling of Large-Scale Functional Brain Networks Based on Structural Connectivity from DTI: Comparison with EEG Derived Phase Coupling Networks and Evaluation of Alternative Methods along the Modeling Path
In this study, we investigate if phase-locking of fast oscillatory activity relies on the anatomical skeleton and if simple computational models informed by structural connectivity can help further to explain missing links in the structure-function relationship. We use diffusion tensor imaging data and alpha band-limited EEG signal recorded in a group of healthy individuals. Our results show th...
متن کاملADA Project: Measuring Functional Connectivity in fMRI data: Statistical Methods and Comparison to Structure
Functional magnetic resonance imaging (fMRI) provides one of our richest sources of data about the functioning human brain. Functional connectivity is a common tool used in the analysis of fMRI data for understanding the relationships between different regions of interest (ROIs). However, functional connectivity can be measured via several different methods, and the choice of method can signifi...
متن کاملBrain Functional Connectivity Changes During Learning of Time Discrimination
The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...
متن کاملStructural and functional, empirical and modeled connectivity in the cerebral cortex of the rat
Connectomics data from animal models provide an invaluable opportunity to reveal the complex interplay between structure and function in the mammalian brain. In this work, we investigate the relationship between structural and functional connectivity in the rat brain cortex using a directed anatomical network generated from a carefully curated meta-analysis of published tracing data, along with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016